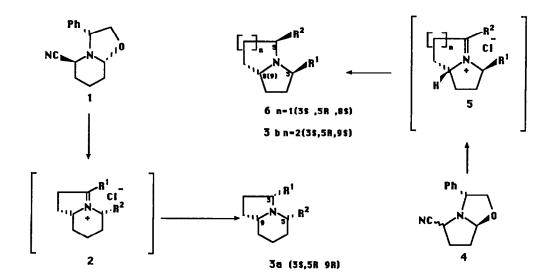
ASYMMETRIC SYNTHESIS XIV¹ : A SHORT AND EFFICIENT SYNTHESIS OF 3,5-DISUBSTITUTED PYRROLIZIDINE ALKALOIDS VIA THE CN(R,S) METHOD²

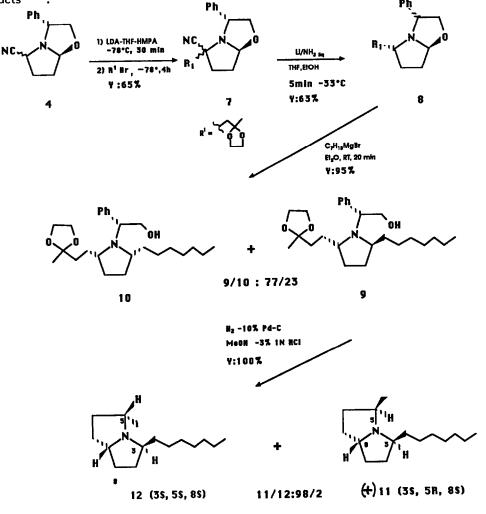

S. ARSENIYADIS, P.Q. HUANG and H.-P. HUSSON*

Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette Cedex, France

<u>Abstract</u> - The enantiospecific synthesis of the dextrorotatory enantiomer of the ant venom alkaloid 3-heptyl-5-methylpyrrolidine <u>11</u> has been achieved in four steps and 31% overall yield from the chiral 2-cyano-5-oxazolopyrrolidine synthon <u>4</u>. On the basis of previous results it was concluded that the absolute configuration of (+) <u>11</u> is 3S, 5R, 8S in disagreement with an earlier report.

In continuation of our program of asymmetric syntheses based on the use of the chiral N-cyanomethyl-4-phenyl-1,3-oxazolidine system, we have now extended the potential of the CN(R,S) method² to the synthesis of pyrrolizidine alkaloids. The use of 2-cyano-6-oxazolopiperidine synthon 1^{3} was particularly noteworthy in elaboration of the five membered ring of indolizidine alkaloids 3a⁴.

The key step of this reaction sequence was the acidic hydrogenolytic cleavage of the chiral auxiliary and reduction of the iminium intermediate <u>2</u> formed after concomitant liberation of the keto group (Scheme 1).



Scheme 1

The ease with which the 1-azabicycloalkane ring system was formed, stimulated us to apply the same strategy to the new 2-cyano-6-oxazolopyrrolidine synthon $\frac{4}{2}$ ^{5,6}. It was feit that synthon $\frac{4}{2}$ would be an ideal starting material for the construction of the disubstituted pyrrolizidine alkaloids of type <u>6</u>. Indeed <u>4</u> can be converted in a stereoselective manner into trans α, α' -disubstituted pyrrolidines ⁵ precursors of <u>5</u>.

Moreover the pyrrolidine synthon $\underline{4}$ can be used for the elaboration of the six membered piperidine moiety of indolizidines. In this event the opposite R configuration will be generated at the C-9 position giving the diastereometric compound $\underline{3b}$ with respect to the previously synthesized derivative $\underline{3a}$

Our initial studies, however, were devoted to the ant venom alkaloid 3-heptyl 5-methylpyrrolizidine ⁷ which has the relative stereochemistry depicted in <u>11</u>. Stereoselective synthesis of 3,5-disubstituted pyrrolidines remains a challenging goal since relatively little work has been done on the synthesis of this rare series of natural products ^{8,9}.

Scheme 2

Alkylation of the anion of $\frac{4}{10}$ (Scheme 2) with 1-bromo-3,3-(ethylenedioxy)butane produced a mixture of stereomers $\frac{7}{10}$, isolated in 65 % yield after flash chromatography on silica gel. A stereospecific decyanation of the diastereomeric mixture $\frac{7}{10}$ was achieved using Li-NH₃ reduction ⁵. Compound $\frac{8}{11}$ was obtained in 63% yield as a single isomer. The S absolute configuration at the new asymmetric center was ascertained unambiguously on the basis of X-ray analysis performed on an analog of $\frac{8}{12}$ and by the use of 1D difference NOE and NOESY NMR techniques on 8. The heptyl chain was introduced at C-5 (pyrrolidine ring numbering) with C₇H₁₅MgBr in 95 % yield providing predominantly the 2,5-trans-dialkylpyrrolidine $\frac{9}{13}$ accompanied by the <u>cis</u> isomer <u>10</u>¹⁴ (9/10 : 77/23).

After separation of the two isomers by silica gel column chromatography compound <u>9</u> was submitted to catalytic hydrogenation conditions⁴. Thus the <u>trans</u> isomer <u>9</u> was converted in 98 % yield into <u>11</u> ¹⁵, which exhibited characteristic ¹³C NMR resonances at 66.3, 65.0 and 61.8ppm ⁷ for the C-8, C-3 and C-5.

The epimeric pyrrolizidine <u>12</u> was also detected from an analysis of the ¹³C NMR spectrum of the crude reaction mixture (approximately 2 %). Indeed the chemical shifts of the C-3, C-5 and C-8 in the NMR spectrum are quite diagnostic in differentiation of the four stereomers ⁷ (i.e. 66.2, 57.6 and 57.1ppm for 12).

The synthetic alkaloid <u>11</u> was found reproducibly to be dextrorotatory : $[\alpha]_D^{20} + 9^\circ$ (c 2.13, CHCl₃); this value is the opposite of that reported by TAKANO et al ⁸ for the same compound synthesized in an enantioselective fashion from a chiral epoxide.

Since the relative stereochemistries at C-3, C-5 and C-8 of 11 are well established in both syntheses, the absolute configuration of the levorotatory compound ⁸ is brought into question.

In conclusion, these latest results illustrate once again the flexibility of the CN(R,S) method which compares very favorably with previously reported racemic 9 and asymmetric 8 syntheses by its shortness and efficiency.

REFERENCES AND NOTES

- For part XIII see : S. ARSENIYADIS, P.Q. HUANG and H.-P. HUSSON, Tetrahedron Lett., accepted for publication.
- 2 Since the publication of our first paper in this series ³ the N-cyanomethyl--4-phenyl-1,3-oxazolidine system has increasingly proved valuable as the reactive feature in chiral synthons designed for the asymmetric synthesis of a large variety of products. The generality of this approach, allowing a remarkable

stereocontrol for the formation of the new R or S asymmetric centers by CN elimination, has led us to call it "the CN(R,S) method" in recognition of the Centre National de la Recherche Scientifique which supports this research.

- 3 L. GUERRIER, J. ROYER, D.S. GRIERSON and H.-P. HUSSON, <u>J. Am. Chem.</u> Soc., 1983, 105, 7754.
- 4 J. ROYER and H.-P. HUSSON, J. Org. Chem., 1985, 50, 670.
- 5 P.Q. HUANG, S. ARSENIYADIS and H.-P. HUSSON, <u>Tetrahedron Lett</u>., 1987, <u>28</u>, 547.
- 6 J. ROYER and H.-P. HUSSON, Tetrahedron Lett., 1987, 28, 6175.
- 7 T.H. JONES, M.S. BLUM, H.M. FALES and C.R. THOMPSON, <u>J. Org. Chem.</u>, 1980, 45, 4778.
- 8 For the only enantioselective synthesis of <u>12</u> see : S. TAKANO, S. OTAKI and K. OGASAWARA, J. Chem. Soc. Chem. Comm., 1983, 1172.
- 9 A stereoselective synthesis of (±) <u>11</u> has been recently published : D. LATHBURY and T. GALLAGHER, J. Chem. Soc. Chem. Comm., 1986, 1017.
- 10 All new compounds gave satisfactory spectral (IR, ¹H, ¹³C NMR) and high resolution mass data. We thank Dr. S.K. KAN (Institut d'Electronique Fondamentale, Université de Paris-Sud) for the use of his 400 MHz NMR spectrometer).
- 11 $\underline{8}$: oil. $[\alpha]_D^{20}$ 35° (c 1.4, CHCl₃). MS m/z E.I. 303 (M⁺, 3), 288(10), 273(15), 260(29), 230(11), 189(49), 188(74), 159(44), 130(33), 104(75), 91(85), 68(69), 43(100); C.I. 304 (MH⁺, 100), 184(33). ¹³C NMR (CDCl₃, 50 MHz) & (ppm) : 23.7, 30.2, 30.3, 35.6, 64.5, 66.7, 68.4, 73.0, 99.0, 110.1, 126.7, 127.9, 128.4, 143.3.
- 12 S. ARSENIYADIS, P.Q. HUANG, D. PIVETEAU and H.-P. HUSSON, <u>Tetrahedron</u> accepted for publication.
- 13 $\underline{9}$: oil. $[\alpha]_{D}^{20}$ + 8° (c 1.0, CHCl₃). MS m/z E.I. 403 (M⁺⁺, 1), 372(100), 304(18), 288(14), 87(22) ; C.I. 404 (MH⁺, 100), 386(22), 372(10). ¹³C NMR (CDCl₃, 50 MHz) δ (ppm) : 14.0, 22.5, 23.7, 26.9, 27.7, 28.8, 29.1, 29.6, 31.7, 32.9, 36.2, 36.5, 60.8, 60.9, 62.3, 63.3, 64.5, 109.7, 127.4, 128.1, 129.1, 139.8.
- 14 $\frac{10}{10}$: oil $[\alpha]_D^{20}$ 26° (c 1.2, CHCl₃). MS m/z E.I. 403 (M^{+.} 1), 372(100), 304(43), 288(38), 260(21), 188(54), 168(24), 104(29), 87(43) ; C.I. 404 (MH⁺, 100), 386(12), 304(29). ¹³C NMR (CDCl₃, 50 MHz) δ (ppm) : 14.2, 22.7, 24.0, 26.8, 29.4, 29.8, 30.0, 31.9, 36.2, 58.2, 62.0, 64.2, 64.7, 65.2, 110.0, 127.9, 128.4, 129.1, 137.4.
- 15 The spectral data of synthetic (+) <u>11</u> were identical to those previously reported for the racemic material ⁷.

(Received in France 18 January 1988)